Weighted-Attribute Triplet Hashing for Large-Scale Similar Judicial Case Matching
نویسندگان
چکیده
منابع مشابه
Sampled Weighted Min-Hashing for Large-Scale Topic Mining
We present Sampled Weighted Min-Hashing (SWMH), a randomized approach to automatically mine topics from large-scale corpora. SWMH generates multiple random partitions of the corpus vocabulary based on term cooccurrence and agglomerates highly overlapping inter-partition cells to produce the mined topics. While other approaches define a topic as a probabilistic distribution over a vocabulary, SW...
متن کاملHashing Algorithms for Large-Scale Learning
In this paper, we first demonstrate that b-bit minwise hashing, whose estimators are positive definite kernels, can be naturally integrated with learning algorithms such as SVM and logistic regression. We adopt a simple scheme to transform the nonlinear (resemblance) kernel into linear (inner product) kernel; and hence large-scale problems can be solved extremely efficiently. Our method provide...
متن کاملFeature Hashing for Large Scale Multitask Learning
Empirical evidence suggests that hashing is an effective strategy for dimensionality reduction and practical nonparametric estimation. In this paper we provide exponential tail bounds for feature hashing and show that the interaction between random subspaces is negligible with high probability. We demonstrate the feasibility of this approach with experimental results for a new use case — multit...
متن کاملDeep Triplet Supervised Hashing
Hashing is one of the most popular and powerful approximate nearest neighbor search techniques for large-scale image retrieval. Most traditional hashing methods first represent images as off-the-shelf visual features and then produce hash codes in a separate stage. However, off-the-shelf visual features may not be optimally compatible with the hash code learning procedure, which may result in s...
متن کاملAccelerated Large Scale Optimization by Concomitant Hashing
Traditional locality-sensitive hashing (LSH) techniques aim to tackle the curse of explosive data scale by guaranteeing that similar samples are projected onto proximal hash buckets. Despite the success of LSH on numerous vision tasks like image retrieval and object matching, however, its potential in large-scale optimization is only realized recently. In this paper we further advance this nasc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computational Intelligence and Neuroscience
سال: 2021
ISSN: 1687-5273,1687-5265
DOI: 10.1155/2021/6650962